Group velocity of discrete-time quantum walks
نویسندگان
چکیده
منابع مشابه
Discrete-Time Quantum Walks and Graph Structures
We formulate three current models of discrete-time quantum walks in a combinatorial way. These walks are shown to be closely related to rotation systems and 1-factorizations of graphs. For two of the models, we compute the traces and total entropies of the average mixing matrices for some cubic graphs. The trace captures how likely a quantum walk is to revisit the state it started with, and the...
متن کاملCrossovers induced by discrete-time quantum walks
We consider crossovers with respect to the weak convergence theorems from a discretetime quantum walk (DTQW). We show that a continuous-time quantum walk (CTQW) and discreteand continuous-time random walks can be expressed as DTQWs in some limits. At first we generalize our previous study [Phys. Rev. A 81, 062129 (2010)] on the DTQW with position measurements. We show that the position measurem...
متن کاملScattering theory and discrete-time quantum walks
We study quantum walks on general graphs from the point of view of scattering theory. For a general finite graph we choose two vertices and attach one half line to each, and consider walks that proceed from one half line, through the graph, to the other. The probability of starting on one line and reaching the other after n steps can be expressed in terms of the transmission amplitude for the g...
متن کاملTwo examples of discrete-time quantum walks taking continuous steps
This note introduces some examples of quantum random walks in R and proves the weak convergence of their rescaled n-step densities. One of the examples is called the Plancherel quantum walk because the “quantum coin flip” is the Fourier Integral (or Plancherel) Transform. The other examples are the Birkhoff quantum walks, so named because the coin flips are effected by means of measure preservi...
متن کاملLocalization of Discrete Time Quantum Walks on the Glued Trees
In this paper, we consider the time averaged distribution of discrete time quantum walks on the glued trees. In order to analyze the walks on the glued trees, we consider a reduction to the walks on path graphs. Using a spectral analysis of the Jacobi matrices defined by the corresponding random walks on the path graphs, we have a spectral decomposition of the time evolution operator of the qua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2009
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.79.052317